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Abstract

Automobile racing provides a unique and challenging environment for studying
competitive multi-agent behavior. In creating autonomous racing agents, one
consideration is the effect that modeling one’s opponents has on finding high-
performance policies. In this paper, we study the overall effectiveness of opponent
modeling in the context of autonomous racing, as well as the value of different
information about one’s opponents. We propose a new approach for learning
salient characteristics of one’s opponent: Learn Thy Enemy (LTE), an algorithmic
framework that combines reinforcement learning with self-supervised learning
about one’s opponents. We evaluate LTE against multiple baselines in a CARLA-
based simulation of an actual major racetrack. The results demonstrate that LTE
substantially outperforms baselines, showing LTE’s effectiveness in extracting
relevant opponent information automatically during interactions with the aim of
better accomplishing the task. Video demonstrations of LTE and baselines are in
this Google Drive folder; descriptions of the videos are in the Appendix.

1 Introduction

Deep reinforcement learning (RL) has achieved tremendous success in various problems ranging from
games (Silver et al., 2018; Ye et al., 2020) to real-world domains including healthcare (Datta et al.,
2021), search and rescue (Yu et al., 2021), and manufacturing (Park et al., 2019; Wang and Gombolay,
2020). RL has also been applied successfully to multi-agent domains (Littman, 1994), where more
than one agent operates within a common environment to compete or to cooperate (Buşoniu, Babuška,
and De Schutter, 2010). In multi-agent settings, RL agents need to learn not just how to perform a
particular task, but also how to work with or compete against others. Despite some very performant
demonstrations of agents trained using multi-agent reinforcement learning (MARL) (OpenAI et al.,
2019; Wurman et al., 2022), the current state-of-the-art algorithms still lack fast, accurate, and
responsive modeling of other agents in the environment. This limits their ability to adapt to unseen
adversaries or new partners, thereby restricting the applicability and robustness of learned models.
In addition, humans use prior information about their adversaries to develop strategies and gain
advantages over opponents (McIlroy-Young et al., 2021).

Among various challenging multi-agent settings, automobile racing is an especially rich domain: it
requires not only real-time continuous control that enables sophisticated driving with minimal error
tolerance but also strategic play to gain the best advantage over opponents (Daly, 2008). Autonomous
racing is a recently-expanding subfield that combines elements of robotics, control theory, and
learning for developing performant agents in both simulation and using physical hardware (Betz
et al., 2022). Despite prior work on using RL in this context (Jaritz et al., 2018), a crucial aspect of
autonomous racing, and automobile racing in general, is the strategic nature of interactions and the
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Figure 1: The race track environment in CARLA.

importance of informed opponent models. In our work, we aim to bridge this gap in the literature,
using autonomous racing as a testbed for studying the value of opponent modeling.

Nashed and Zilberstein (2022) point out a key limitation in previous literature: most opponent
modeling algorithms are evaluated by the accuracy of opponent behavior or strategy prediction and do
not conduct experiments that test the entire pipeline (i.e., utilizing the modeled opponent information
to improve the performance of the ego agent). As such, it has remained unanswered whether the
proposed methods actually improve an agent’s capabilities to exploit its opponents’ strategies.

In this paper, we propose a novel algorithm, Learn Thy Enemy (LTE), that adaptively infers other
agents’ strategies online, and learns to leverage the opponent information in maximizing the ego
agent’s performance. We also propose a testing protocol that directly evaluates the benefit that
opponent modeling brings to task performance, instead of only evaluating the accuracy of opponent
models. We test our algorithm on a CARLA environment (Dosovitskiy et al., 2017) based on a
real, major racetrack and demonstrate the significantly-improved performance of agents trained with
Learn Thy Enemy (LTE) over benchmarks that have access to different manually-designed or learned
information about opponent strategies.

2 Related Work

There has been abundant work on modeling other agents in the multi-agent literature, in both
collaborative and competitive settings (Albrecht and Stone, 2018). In particular, there has been some
notable prior work that incorporates models of other agents in studying the emergence of cooperative
behaviors (Leibo et al., 2017; Foerster et al., 2018). This work has primarily focused on agents in
discrete, stylized domains.

Nashed and Zilberstein (2022) define opponent modeling as “the ability to use prior knowledge and
observations to predict the behavior of an opponent” and provide a good survey of opponent modeling
approaches, in which they categorize these into discriminative classification, generative methods, and
policy approximation. In discriminative classification, experts design discrete strategies and label
data, after which a classification model is obtained from supervised learning (Laviers and Sukthankar,
2011). The discriminative approach relies on the assumption that any expert knowledge about discrete
strategies is accurate and helpful in downstream task learning. The generative methods model the
full generative process of the opponent behavior, often with Bayesian Networks (Wei et al., 2013)
or Hidden Markov Models (Sukthankar and Sycara, 2006). However, the generative models rely
on even more expert knowledge and data in constructing a high-quality generative process. Direct
policy approximation relaxes the assumption on expert knowledge by directly learning a mapping
from environment states to opponent behaviors (Tang et al., 2020), but still has the tradeoff between
the learned accuracy and the amount of data needed for training.
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Figure 2: An illustration of the race track used for our experiments. The T s represent turn segments
and the Ss represent straightaway segments of the track. The green dots denote the segmentation
points that separate the segments.

Most previous literature focuses solely on evaluating the opponent models. In particular, most
previous work in this area underemphasizes or even overlooks the ultimate goal of opponent modeling:
opponent exploitation, which measures how the opponent models help an agent achieve larger
advantages over its adversaries. As pointed out by Nashed and Zilberstein (2022), the value of the
information provided by opponent models cannot be measured by evaluating the model outputs in
isolation and has to be evaluated in situ. In this work, we evaluate our algorithm and baselines in
terms of racing performance to actually test the utility of opponent modeling.

There has also been prior work on autonomous racing, with a recent emphasis on developing super-
human agents. GT Sophy (Wurman et al., 2022) has demonstrated a very successful autonomous
racing agent against world champion players in the Gran Turismo video game. However, our work
focuses on an area overlooked in developing GT Sophy: multi-agent strategic play. Despite the high
performance achieved by the agent trained with reinforcement learning, the authors admit GT Sophy
lacks the notion of opponents and does not have a strategic plan on how to best gain advantages over
its opponents. In our work, we show that our framework can learn to perform the racing task in Carla
simulation with a simplified reward structure, and that explicitly modeling opponent information
benefits the performance of the ego car in a multi-agent setting. This represents a novel contribution
to the autonomous racing literature about what opponent information should be encoded for a policy’s
use and how an agent can learn the opponent encoding during the training process.

3 Preliminaries

In this work, we use the standard Markov Decision Process (MDP) formalism:
⟨S,A, T (s′|s, a), R(s, s′), γ, ρ0(s)⟩, where S is the set of states, A is the set of actions,
T (s′|s, a) is the transition function, R(s, s′) is the reward function, γ is the discount factor, and ρ0(s)
is the initial state distribution. The goal of a reinforcement learning (RL) algorithm is to find a policy,
π(a|s), that maximizes the expected return: π∗ = argmaxπ Eτ∼π[

∑∞
t=0 γ

tR(st, st+1)], where
τ ∼ π is short for the episode sampling process: s0 ∼ ρ0, at ∼ π(st), st+1 ∼ T (·|s, a) ∀t ≥ 0.

We formalize our problem as a two-player Markov game, a multi-agent extension of an MDP:
M = (S, {A}1,2, T, {R}1,2, γ, ρ0). The Markov game allows each agent to choose its action based
on the state, and the transition happens when both agents choose their actions: T (s′|s, a1, a2). Each
agent i then obtains a reward according to its reward function, Ri(s, s′). We use the superscript −i to
denote the agent other than the agent i. Each policy’s objective is then to maximize its own expected
return: πi∗ = argmaxπi Eπi,π−i [

∑∞
t=0 γ

tRi(st, st+1)]. It can be seen that the objective involves
the opponent policy, π−i, and our approach aims to model and extract helpful information from the
opponent’s behavior to increase the ego agent’s performance.

4 Environment

We study algorithms in a multi-agent racing environment developed in the CARLA (Dosovitskiy
et al., 2017) simulator (see Figure 1 for a view of the environment). Our map is based on a faithful
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reproduction of a major real-world race track generated from photography, driver interviews, and
sensor data collected from on-track experiments. An illustration of the race track is displayed in
Figure 2. The vehicles’ dynamics implement an approximation to race car physics, with values for
car engine output and tire friction profiles corresponding to realistic ranges. The physics profile was
tuned using input from professional drivers familiar with the physical course that was virtualized in
the simulation and actual vehicles used for the racing task. In our computational experiments, we
focus entirely on the two-agent case.

Observations given to the agents consist of a 148-dimensional vector, which includes agent-specific
observations (distance traveled, its Cartesian coordinates, velocity, acceleration, tire slip angles, yaw
rate, heading, and previous action), track information (heading relative to track direction, proportional
distance from track center line to track edges, and 30 forward-looking left/right track edge point pairs
spaced proportionally to velocity), and the Cartesian coordinates of the other agent. The action space
for each agent is a 2-dimensional vector, consisting of the steering angle and combined throttle-brake
(normalized to [−1, 1]).
The reward function for each agent consists of three components:

R
def
= Rprogress +Rpassing +Rcollision (1)

The first component is the progress reward, as shown in Equation 2, where 1on-track(·) denotes the
indicator function to test whether the vehicle is on- or off- track and fprogress(·) is the mapping from
vehicle state to the longitudinal position on the track. In other words, the progress reward measures
the longitudinal progress on the track, i.e., more progress along the track results in a higher reward,
unless the agent goes off-track.

Rprogress(st, st+1)
def
= 1on-track(st+1) · (fprogress(st+1)− fprogress(st)) (2)

The second reward component is a passing bonus: each agent receives a reward for passing the
other agent, and a symmetric penalty for being passed, following Wurman et al. (2022). The third
reward component is a collision penalty: each agent is penalized for collision with other vehicles
to discourage aggressive, unrealistic passing. Note that our reward structure is much simpler (three
components) than previous literature (Wurman et al. (2022), which consists of eight components) and
we demonstrate that such a simple reward function is indeed enough for inducing performant racing
behaviors.

We further introduce two episode termination conditions: out-of-boundary termination, which
terminate the episode when the vehicle drives significantly off the track, and no-progress termination
where the vehicle does not have positive forward-moving speed. The two termination conditions
work with the reward function to encourage on-track, canonical driving. If none of the termination
conditions are triggered during the race, the episode is truncated at 1600 timesteps.

5 Method

In this section, we start with an analysis of the drawbacks in previous opponent modeling paradigms
(depicted in Figure 3 (a) and (b)). We then describe our approach, Learn Thy Enemy (LTE), that
overcomes the limitations of previous approaches via a novel mutual-information-maximization
objective.

A straightforward approach to modeling opponents is to learn to classify different strategies from
labeled behaviors. The opponent encoder can be trained by supervised learning signals with the
labeled dataset mapping observation history of opponents, Ot = {o−it′ }tt′=t−T+1 (e.g., in our racing
task, the opponent’s position), onto classes or features of opponent strategy. The classified strategy
information is then fed into the policy as an auxiliary observation to supplement the environment
observation, st, as shown in Figure 3(a). This approach relies heavily on expert knowledge about
strategy classes and features that define strategies. More crucially, the encoder is agnostic about the
reinforcement learning objective, and therefore may not generate information that the policy could
utilize to optimize its performance. This is especially important in settings such as automobile racing
where expert knowledge may not be sufficient to define the salient characteristics of good strategies –
an expert may be able to identify a policy as high-skill but not necessarily quantitatively characterize
what makes it so.
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Figure 3: Comparison among three paradigms of opponent modeling. (a) Task-agnostic encoder: the
encoder is trained with supervised learning signals and is agnostic about the ego agent’s decision-
making. (b) Task-aware encoder: the encoder is trained with reinforcement learning (task-aware, i.e.,
the encoder outputs opponent information that is helpful for the policy to achieve a high reward).
(c) Our opponent-aware policy (LTE): in addition to the task-aware encoder, the policy is required
to take the opponent’s information into consideration by generating actions that can reconstruct the
opponent’s encoding.

Algorithm 1: Learn Thy Enemy (LTE)

Input :Training iterations E, opponent policy set ΠO = {πOi }Ni=1 where N is the number of
opponent policies, learning rate α, number of training iterations for each environment
episode M , opponent history length T , target Q network soft update coefficient τ .

Output :Learned ego policy, πθ, Q-function, Qξ, target Q-function, Qtarget
Ξ , opponent encoder,

gϕ, and posterior predictor, qψ .
Initialize :Initialize neural network parameters θ, ϕ, ψ, ξ. Copy Q parameters ξ to target Q

parameters, Ξ. Empty the replay buffer B.
1 for i = 1 to E do
2 Collect trajectories {τ} with the current policy, πθ, the current opponent encoder, gϕ, and

sampled opponent policy, πO ∼ ΠO

3 Add trajectories {τ} to replay buffer B
4 for j = 1 to M do
5 Sample minibatch {(st, at, Ot, rt, st+1, Ot+1)} ∼ B.
6 Calculate opponent encoding, ωt = gϕ(Ot), ωt+1 = gϕ(Ot+1).
7 Calculate critic loss,

Lcritic = huber_loss(Qξ(st, ωt, at), rt +Qtarget
Ξ (st+1, ωt+1, πθ(st+1, ωt+1)) and its

gradient with respect to ξ.
8 Calculate policy loss, Lpolicy = −Qξ(st, ωt, πθ(st, ωt)), and its gradient with respect to

θ and ϕ.
9 Calculate mutual information loss, LMI = − log [qψ(ωt|st, πθ(st, ωt))]−H(ωt), and its

gradient with respect to ψ, θ, and ϕ.
10 Update θ, ϕ, ψ, ξ based on their accumulated gradients with learning rate α.
11 Soft update the target Q network: Ξ← (1− τ)Ξ + τξ.

In order to make the encoder task-aware and remove the dependency on strong expert knowl-
edge in supervised learning, we propose to allow the reinforcement learning signal, LRL

def
=

Eτ∼π[
∑∞
t=0 γ

tR(st, st+1)], to update the encoder model, assuming the differentiability of the policy
model, as shown in Figure 3 (b).
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Although this paradigm allows the encoder to generate helpful encodings for improving the policy’s
performance, the policy could also largely ignore the output of the encoder, as the output of the
encoder during the initial phase of training is random and not useful for learning the task. By the time
the encoder learns to extract helpful information, the policy may already learn to ignore the opponent
encoding, ωt (since it was not helpful in earlier stages of training).

As such, we further introduce an auxiliary objective that encourages the learned policy output, at,
to incorporate the opponent information, ωt: the mutual information between at and ωt, defined as
I(ω; a)

def
= H(ω)−H(ω|a), where H(•) is the entropy. Intuitively, the mutual information can be

seen as the decrease in entropy (uncertainty about ω’s value) once we know the action a. Maximizing
the mutual information I(ω; a) ensures that given ω, the action a will be less stochastic, i.e., a’s
choice depends on ω.

However, calculating I(a;ω) directly is intractable due to the integral over all possible ω, and
therefore we seek to approximate it with a variational lower-bound, which we denote by LMI (the
mutual information objective), as shown in Equation 3, where KL denotes the KL-divergence.

I(ω; a)
def
= H(ω)−H(ω|a)
= E(a,ω)∼P (a,ω)[log p(ω|a)] +H(ω)

= E(a,ω)∼P (a,ω)[log
p(ω|a)q(ω|a)

q(ω|a)
] +H(ω)

= Ea∼P (a)[KL[p(ω|a)||q(ω|a)]] + E(a,ω)∼P (a,ω)[log q(ω|a)] +H(ω)

≥ E(a,ω)∼P (a,ω)[log q(ω|a)] +H(ω)

def
= LMI. (3)

The equality of the ≥ holds when q(ω|a) exactly matches the true posterior, p(ω|a).
We note that unlike previous mutual information maximization paradigms such as DIAYN (Eysenbach
et al., 2019), our latent information, ω, is not freely sampled but is given by the encoder, gϕ(Ot),
dependent on the opponent’s behavior history. This has two advantages. First, with a neural network-
parameterized ω output distribution, we are readily able to calculate H(ω) to obtain the value of the
lower bound instead of ignoring the constant, H(ω), as in most previous literature (e.g., Poole et al.
(2019)). Second, gradients originating from maximizing LMI update not only the posterior and the
policy (the first term of LMI) but also the encoder to extract meaningful, impactful information (both
terms of LMI). The task objective, LRL, also updates both the policy and the encoder, aiming to find
helpful information from opponent behaviors that could contribute to the high performance of the
ego agent.

Combining the idea of task-aware learning and the mutual information maximization for the opponent
encoder, we present our algorithm, LTE, in Algorithm 1. For each training iteration (line 1), we
first collect rollouts with the current policy and opponent encoder (line 2) by the generative process:
s0 ∼ ρ(·), ωt ∼ gϕ(Ot), a

1
t ∼ πθ(st, ωt), a

2
t ∼ πO(st), st+1 ∼ T (st, a

1
t , a

2
t ) ∀t ≥ 0, where πO

denotes an opponent policy. We add the trajectories into a replay buffer, consistent with off-policy
reinforcement learning approaches (line 3).

We then run training for M iterations (lines 4-11). In each iteration, we sample a minibatch from
the replay buffer (line 5), and calculate the opponent encoding information based on the history of
opponent positions (line 6). We then construct the three losses, the RL critic loss Lcritic, the RL policy
loss Lpolicy, and the auxiliary mutual information loss LMI and compute corresponding gradients in
lines 7-9, respectively.

It is worth noting the parameters that receive gradient updates from each loss function. The critic
loss only updates the Q-function parameters, ξ. Both the policy loss and the mutual information loss
update the policy parameters, θ, and the encoder parameters, ϕ, to generate actions that result in high
performance in the environment while considering the opponent information and generating helpful
opponent information from the encoder. The mutual information loss also updates the posterior
network, ψ, to provide correct learning signals for the mutual information loss by lowering the gap
between LMI and the true mutual information I(ω; a).
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Once all gradients are calculated, we update learning network parameters in line 10, and update the
target Q network with a soft parameter copy from the Q network in line 11, following Silver et al.
(2014).

6 Experiments

In the computational experiments described here, we compare the performance of the LTE framework
to a number of baselines. The purpose of these experiments is to empirically evaluate whether
there are advantages to online, task-aware opponent information extraction as compared to offline,
task-unaware opponent modeling approaches.

The first step necessary for evaluating the efficacy of an opponent-modeling framework requires
diverse and high-quality policies in the environment for the ego agent to compete against. To do this,
we train RL agents with the environment reward and DIAYN intrinsic reward (Eysenbach et al., 2019)
which encourages diverse behaviors. We generate five competitive and diverse opponent policies,
which are used as the opponents in all of the experiments described next.

6.1 Baseline

We compare LTE against three main groups of benchmarks, as detailed below:

1. Baseline (Position Only): the ego agent only has access to opponent information via the
opponent car’s location in the states, i.e., a no-explicit-opponent-modeling baseline.

2. Baseline (Opponent Features): the ego agent has access to additional manually-engineered
features of each opponent, i.e., an expert-knowledge-infused baseline.

3. Baseline (Future Opponent Positions): the ego agent has access to the predicted future
positions of opponents, which are given by a model trained on an offline dataset.

Within the opponent features baseline, we experiment with multiple approaches to insert the expert-
specified features:

1. Baseline (Overall Features): six features of the opponents calculated from a dataset con-
sisting of 25 rollout episodes (5 rollouts against each of the five opponent models). The
six features include average speed, speed standard deviation, the average distance to track
boundary as a proportion to the track width, the percentage of driving on the left side of the
track, the average latitudinal position on the track, and the maximum steering angle.

2. Baseline (Turn-By-Turn): as part of the expert knowledge, racing behaviors are generally
homogeneous within the scope of one turn and heterogeneous between the turns, as each car
needs to decide whether to gain an advantage over or block opponents in each segment of
the track. We allow Baseline (Turn-By-Turn) to have access to a set of 13 turn-by-turn based
features (six features as in Baseline (Overall Features)), resulting in a total of 78 additional
features.

3. Baseline (Current Turn): baseline (Turn-By-Turn) swamps the observation space with all
turns’ features. However, we could again incorporate the expert knowledge that the ego
decision may only focus on the local information about the opponent’s strategy. Thus, we
propose the Baseline (Current Turn) to take six opponent features corresponding to the turn
the ego agent is at as additional information for the ego vehicle.

4. Baseline (One-Hot): to test the efficacy of knowing the identity of the opponent but no other
characteristics, we include Baseline (One-Hot) that only provides a one-hot encoding of
different opponents to help the ego agent understand that there are different opponents but
providing no further information about them.

6.2 Training Setup

We conduct our experiments on Amazon Web Services (AWS) EC2 and each training run of 2,000,000
environment steps takes approximately 14 hours to complete on a single g4dn.8xlarge instance (32
2.5Ghz virtual CPUs, 128 GB of RAM, and a NVIDIA T4 GPU with 16 GB VRAM), showing the
general feasibility of training the baselines and LTE with a very reasonable amount of computational
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Hyperparameter Value
Hidden dims [1024, 1024]
Learning rate 0.0001
Batch size 2048
Grad clip norm 10
Nstep 5
Hidden activation tanh
Discount rate 0.99
Opponent encoder dimension 8
Weight for mutual information loss 1000

Table 1: This table lists the hyperparameters identified by a hyperparameter sweep. All of the values
that were evaluated as part of the sweep are in the Supplementary Materials.

Lap Time (s) Lead % Leader Dist. (m) Opponent Dist. (m)
Position Only 70.94 (2.02) 38.29 (41.44) 32.98 (40.10) -8.03 (71.39)
Overall Feat. 70.87 (2.09) 58.99 (37.75) 26.94 (36.27) 4.09 (60.60)
Turn-By-Turn 73.21 (2.39) 36.35 (35.18) 62.07 (60.67) -48.82 (74.99)
Current Turn 71.64 (3.03) 48.01 (40.63) 49.22 (62.96) -14.12 (102.10)
One-Hot 73.07 (3.29) 39.27 (38.30) 52.58 (56.92) -32.85 (76.49)
LTE (Ours) 69.38∗∗∗ (3.23) 73.41∗∗∗ (37.38) 20.65∗∗∗ (45.73) 40.20∗∗∗ (80.94)

Table 2: This table summarizes the evaluation results of our algorithm and baselines. The result is an
average of training with three different seeds and 100 evaluation rollouts (20 repeats against each
opponent model). The numbers in parentheses represent standard deviation. Bold denotes the best
performance on the metric. The ∗∗∗ indicates statistical significance of running a Kruskal-Wallis H
test where we reject the hypothesis of the median of all experiments’ results for a single metric being
the same based on a p value threshold of 0.001.

resources. We train LTE and each baseline technique for three seeds (0, 1, and 2), and evaluate the
final policy with each of the five opponents for 20 episodes. As such, each metric reported is the
result of an average over 3× 5× 20 = 300 evaluation rollouts.

We conducted a hyperparameter sweep to determine the best hyperparameter set for LTE and baselines,
and concluded the best-performing hyperparameters as shown in Table 1, where Nstep denotes the
number of steps forward-looking in the critic loss calculation, which modulates variance (large Nstep
has high Monte Carlo variance) vs. bias (small Nstep relies on the biased Q-value estimation).

6.3 Results

We summarize the experimental results in Table 2, where we compare LTE with baselines on four
metrics: lap time, lead percentage, distance to leader, and distance to opponent. The lap time is
measured as the time spent from first reaching the starting line to arriving at the starting line the
second time1, which is the gold standard in the racing domain for evaluating single-agent racing. As
we focus more on how opponent modeling benefits agents in a multi-agent domain, we introduce
three additional metrics: the lead percentage which depicts the percentage where the ego car is ahead
of the opponent, the distance to leader which is non-negative (and 0 when the ego is the leader), and
distance to opponent which is positive when the ego is ahead of the opponent and negative otherwise.

As can be seen in Table 2, LTE outperforms all baselines on all four metrics, showing its strong
capability in not only the racing task (minimizing lap time) but also competing with and successfully
overtaking its opponent in the multi-agent racing setting (lead percentage, distance to leader, and
distance to opponent). Notably, Baseline (Overall Features) outperforms all other expert-knowledge-

1Record human lap times on this particular track are in the approximately 80-90 second range. All of the
autonomous racing agents that we train, including baselines, are substantially faster. Because our focus in this
work is not specifically on comparing human/AI performance, and due to possible differences in the simulation
domain relative to actual vehicles on the track, including perception and actuation, we do not discuss this point
further.
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based baselines, showing the value of adding expert-engineered features compared with just an
opponent indicator (one-hot). We also note that Baseline (Future Opponent Positions) completely
fails to yield any successful policy and is not able to successfully complete a lap; since we calculated
these statistics only for complete laps, we omit it from the table.

These results illustrate LTE’s strong capabilities in actually utilizing opponent information in gaining
strategic advantages when racing against opponents, as opposed to just demonstrating the quality of
opponent modeling with no impact on performance.

7 Conclusion

In this paper, we introduced a new algorithm for opponent modeling and exploitation, Learn Thy
Enemy (LTE), and demonstrated its capability to achieve high performance in a rich, dynamic
multi-agent racing environment by incorporating information about its opponent. In addition to being
conceptually straightforward, training an agent using LTE requires a similar amount of computation
as training an agent using other deep RL algorithms (DIAYN and the baselines introduced in our
experiments), while exceeding their performance in the environment along both single-agent and
multi-agent metrics.

Next, we discuss some limitations of our approach and directions for future work.

7.1 Future Work

The work presented in this paper has a number of potential avenues for future study, along two
primary axes: (1) increasing the robustness of the opponent modeling introduced here, and (2)
moving beyond simulation to actual autonomous racing agents. In the experiments that we conduct
here, we evaluate the baselines with particular pre-trained opponents; we do not evaluate against
unseen, or adversarially-generated, opponents. In addition, the opponents are not themselves learning
agents, arguably making the task of modeling them simpler. Thus, immediate next steps could include
testing the capability of LTE-trained agents to generalize and perform well against unseen opponents,
and also to model multiple, heterogeneous opponents at the same time. Possible approaches to
this include modifying the neural network architecture of the opponent encoder, gϕ, to incorporate
multiple opponents, and possibly learning to only pay attention to some subset of them (e.g., agents
of similar skill who are likely to have more interactions with the ego agent).

The simulation environment that we conduct our experiments within is based on a high-fidelity
reproduction (in terms of terrain and other features) of a real-world major race track, and a possible
extension of this work would be to deploy the policies learned to actual physical race cars on this
track. Clearly, this direction requires a number of steps not discussed here, including using visual
observations instead of agent positions, ensuring safety, dealing with noisy sensor hardware, and
actuation delays. Nevertheless, the future vision of this being an initial step towards performant
opponent-aware policies that can be used for autonomous racing is promising.
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Appendix and Supplementary Material for
Learn Thy Enemy: Online, Task-Aware Opponent Modeling in Autonomous
Racing

A Hyperparameters Used

When training the opponent models using DIAYN, a hyperparameter sweep was conducted to find the
final set of hyperparameters, with the models that had the highest total reward at the end of training
chosen as the opponent models. The ranges of hyperparameters tested during the sweep were:

Hyperparameter Value
Hidden dims [256,256,256,256,256], [256,512,512,256], [512,512,512]

[1024,1024], [1024,1024,1024], [2048,2048]
Learning rate 0,001, 0.0005, 0.0001
Batch size 256, 512, 1024, 2048
Replay buffer size 100000, 1000000, 5000000
Grad clip norm None, 0.5, 1.0, 5.0, 10
Nstep 1,3,5,10
Hidden activation tanh, relu, leaky relu

Table 3: Hyperparameters tested as part of the hyperparameter sweep.

The final network training hyperparameters for the baseline experiments are shown in Table 4.

Hyperparameter Value
Hidden dims [1024, 1024]
Learning rate 0.0001
Batch size 2048
Grad clip norm 10
Nstep 5
Hidden activation tanh
Discount rate 0.99

Table 4: Final hyperparameter values, as determined by the highest-reward models from the hyperpa-
rameter sweep.

In addition to the hyperparameters above, the LTE algorithm uses the following additional hyperpa-
rameter values: an encoding dimension size of 8 was used as the size of the encoding network for the
opponent policy, and a mutual information weight of 1000 was used.

B Demonstration Videos

Please see this Google Drive folder for some demonstration videos of the trained agents. The red car
is the ego agent and the blue car is the opponent. Note that despite the appearance of the vehicles
being different, this is purely to make it easier to distinguish the ego and opponent vehicles. The
physics profiles of the vehicles in the simulation (i.e., engine power, tire friction values, etc.) are
exactly the same. The videos are recorded at 2x real-time.

• 0_baseline_position_only.mp4: This video demonstrates the initial failure of the ego
agent to block an overtake maneuver by the opponent. Subsequently to this, the ego agent is
behind.

• 1_baseline_overall_features.mp4: The ego agent fails to block an overtaking
manuever by the opponent.

• 2_baseline_turn_by_turn.mp4: The ego agent displays reasonable blocking behavior,
until an unsuccessful block results in both agents running off the track.

• 3_baseline_current_turn.mp4: The ego agent fails to block an overtaking maneuver
by the opponent.
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• 4_baseline_one_hot.mp4: The ego agent fails to block an overtaking maneuver by the
opponent.

• 5_learn_thy_enemy.mp4: The ego agent outmaneuvers its opponent near the beginning
of the track and successfully maintains its positional advantage over the entire lap.
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